Network Terminology \& Representation

A set of "actors" (i.e. people, orgs, ...)

Alecia

Blanca Fernanda

Cheng
Dorothy

Esther
Fernanda
Hassan
Ivan

And a set of "relations"
(i.e. friendship, payment, ...)

What is a social network?

Putting these together gives us a "network" picture

etwork mini-glossary

| Node / vertex / actor: A single person, organization, etc.
| Edge / tie / relation / arc: A link between two nodes
|Ego: A focal node
| Alter: Anyone connected to ego
| Path: A chain of nodes connected by edges (usually: no repeats)
| Cluster: A subset of nodes that are "tightly tied" to each other

Network representations

Graph visualizations

Intuitive

: Easy to understand!
: Circles connected by lines don't require much explanation

Descriptive

Easily gives an idea of the size of a network, overall density of relations, etc.
: Can suggest important structure

Can be deceptive!

: Graph visualizations use a large number of heuristics to get a picture that "looks good."
: Different heuristics and different runs of the same heuristic can tell diverginig stories

etwork representations

Adjacency matrices

Mathematically convenient
! Tool borrowed from formal graph theory
: Allows for analysis (and theorization!) using the branch of mathematics called linear algebra

Computationally convenient

 : Computers are very good at working with adjacency matrices (unless they get very big): Easy to perform simple measurements and manipulations

Looks intimidating
: Can look overwhelming for those without a background in math or computer science

$\begin{array}{lllllllll}0 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0\end{array}$

000010000

000000010

Network representations

Reading adjacency matrices

	A	B	C	D	E	F	G	H	I
Alesia	0	1	1	1	0	0	0	0	0
Blanca	1	0	1	1	0	0	0	0	0
Cheng	1	1	0	1	0	0	0	0	0
Dorothy	1	1	1	0	1	0	0	0	0
Esther	0	0	0	1	0	1	1	1	0
Fernanda	0	0	0	0	1	0	0	0	0
George	0	0	0	0	1	0	0	0	0
Hassan	0	0	0	0	1	0	0	0	1
Ivan	0	0	0	0	0	0	0	1	0

Network representafions

Reading adjacency matrices

	A	B	C	D	E	F	G	H	I
Alesia	0	1	1	1	0	0	0	0	0
Blanca	1	0	1	1	0	0	0	0	0
Cheng	1	1	0	1	0	0	0	0	0
Dorothy	1	1	1	0	1	0	0	0	0
Esther	0	0	0	1	0	1	1	1	0
Fernanda	0	0	0	0	1	0	0	0	0
George	0	0	0	0	1	0	0	0	0
Hassan	0	0	0	0	1	0	0	0	1
Ivan	0	0	0	0	0	0	0	1	0

Esther is friends with Dorothy, Fernanda, George, and Hassan

Network representafions

Reading adjacency matrices

The diagonal of the matrix shows selfrelationships (often

Network representafions

Reading adjacency matrices

Network representations

Adjacency matrices are closely related to affiliation matrices like the one from this week's worksheet

Names of Participants of Group I

1. Mrs. Evelyn Jefferson
2. Miss Laura Mandeville
3. Miss Theresa Anderson
4. Miss Brenda Rogers
5. Miss Charlotte McDowd
6. Miss Frances Anderson
7. Miss Eleanor Nye.
8. Miss Pearl Oglethorpe.
9. Miss Ruth DeSand.
10. Miss Verne Sanderson.
11. Miss Myra Liddell.
12. Miss Katherine Rogers.
13. Mrs. Sylvia Avondale.
14. Mrs. Nora Fayette
15. Mrs. Helen Lloyd
16. Mrs. Dorothy Murchison
17. Mrs. Olivia Carleton
18. Mrs. Flora Price.

Code Numbers and Dates of Social Events Reported in Old City Herald

(1)	(2) $3 / 2$	(3)	$\stackrel{(4)}{9 / 26}$	$\stackrel{(5)}{2 / 25}$	(6) $5 / 19$	${ }_{3 / 15}$	(8) $9 / 16$	(9) $4 / 8$	(10)	${ }_{2 / 23}^{(11)}$	${ }_{4 / 7}^{(12)}$	(13)	(14) $8 / 3$
\times	\times	\times	\times	\times	\times		\times	\times					
X	\times	\times		\times	\times	\times	\times						
	\times												
\times		\times	\times	\times	\times	\times	\times						
		\times	\times	\times		\times							
		\times		\times	\times		\times						
				\times	\times	\times	\times						
					\times		\times	\times					
				\times		\times	\times	\times					
						\times	\times	\times			\times		
							\times	\times	\times		\times		
							\times	\times	\times		\times	\times	\times
						\times	\times	\times	\times		\times	\times	\times
					\times	\times		\times	\times	\times	\times	\times	\times
						\times	\times		\times	\times	\times		
							\times	\times					
								\times		\times			
								\times		\times			

Fig. 3.-Frequency of interparticipation of a group of women in Old City, 1936-Group I.

Network Theory

What is a network fie?

What counts as a tie?
At its broadest, a tie is any kind of relation between actors

Many network scholars focus on social ties (relationships rather than just relations)

Tie characteristics

|Events vs states
Directed vs undirected
(asymmetric vs antisemetric vs semetric)
Valued vs binary
(weights and other attributes)

Network representations

Borgatti and Halgin (2011) on network theory

Two conistent traits of network theories

! Focus on structure and position as causal elements
! Implicit theories of what a network does

Networks allow flow
: One view of what networks 'do' is act as pipes that transmit information, money, contagions, norms, etc.

Rarely stated, but implicit in the large majority of network analysis
E.g. Strength of weak ties (Granovetter) and structural holes (Burt)

Networks reflect bonds
A long-running (but somewhat less common) theorization holds that network ties define us (our interests, capabilities, identities)
E.g. managers are defined by relationships of authority over others
E.g. being followed by a celebrity on social media can grant status

Networks are prisms (Podolny) that affect how we are seen and how we see ourselves

Discussion

Image credit

Screenshot from I Love
Lucy (1951), via
anthonybalduccisjournal.w
ordpress.com

Image via Wikimedia

Author unknown, via James Gardiner / Wellcome collection

