Clusters of Nodes in Networks

Clusters

Grouping nodes in networks

Why?

- E Groups are a basic theoretical component of social structure.
- E Cohesion, unity, identity, ...
- E Divisions, conflict, hierarchy, ...

How?

E Generally: clusters are groups of nodes that tend to connect more to each other than to others

Different formalizations of the basic idea:

- Embedded cliques
- : Overlapping/hierarchical groups
- E Partition of entire network

Clusters

Grouping nodes in networks

Why?

- E Groups are a basic theoretical component of social structure.
- E Cohesion, unity, identity, ...
- E Divisions, conflict, hierarchy, ...

How?

E Generally: clusters are groups of nodes that tend to connect more to each other than to others

Different formalizations of the basic idea:

- Embedded cliques
- Overlapping/hierarchical groups
- E Partition of entire network

Clusters

Grouping nodes in networks

Why?

- Groups are a basic theoretical component of social structure.
- E Cohesion, unity, identity, ...
- E Divisions, conflict, hierarchy, ...

How?

E Generally: clusters are groups of nodes that tend to connect more to each other than to others

Different formalizations of the basic idea:

- Embedded cliques
- Overlapping/hierarchical groups
- E Partition of entire network

Modularity

Partitioning a network

A *partitioning* of a network is any labeling scheme that assigns every node exactly one label.

Modularity (Q) is one measure of 'goodness' of a partitioning

- E For any specific partitioning of a network, the *modularity* of that partitioning measures the degree to which edges tend to stay within a partition.
- For a partitioning with high modularity, edges will tend to connect nodes with the same label.
- Ranges from –0.5 (very bad fit) to 1.0 (very good fit)

Modularity maximization

E Clustering strategy that finds the partitioning that has the highest possible modularity

A Midsummer Night's Dream

A Midsummer Night's Dream

Character network

- Directed edges indicate number of times one character's line immediately preceded another's
- E.g. Cobweb speaks and then Mote speaks
- E Rough proxy for interaction

A Midsummer Night's Dream

Maximum modularity clusters

i Q = 0.472

10

11

Scientific Consensus

Sociology of science

The Temporal Structure of Scientific Consensus Formation

Shwed and Bearman (2010)

Crash course on the sociology of science

S&B:

- E Scientific consensus is contingent on broader societal discourse
- E Therefore there is not a uniform progression toward consensus
- E S&B investigate this by using *citation networks* to measure consensus over time

Citation networks

Measuring relations between scholarly publications

Citation network

- Vertices are publications (articles, books, conference papers, etc.)
- E Directed edges represent citation
- : Temporality imposes structure

Citations as relations

- Scientific knowledge is not purely cumulative
- E Citation indicates similarity of theories, methods, assumptions, etc.

Measuring consensus

Two hypothetical citation networks

Q = 0.5 (epistemic rivalry)

Q = 0.05 (epistemic consensus)