# Roles as <br> Relations 

## Sociology of roles

Roles are bundles of expectations in interaction : the role of parent might be defined by expectations of caregiving toward certain children
: the role of child might be defined (in part) by expectations of dependence on parents
: the role of boxer is defined by expectations of physical violence toward other boxers and deference toward a coach


Roles are about relations between categories perfect for network analysis!

## Roles as relations

Network relations


Blockmodelling aims to formalize this intuition : Somewhat vague term, refers to methods, models, and theories that focus on the relational nature of roles
: Find categories of actors in "equivalent" positions in a network


# Structural \& Regular Equivalence 

## Equivalence

## Two major forms of "equivalence" of network position: structural and regular

## Structural equivalence

! Two actors are structurally equivalent if they have the same ties to the same set of actors
E.g. Bob and Linda Belcher are structurally equivalent in their role as "caregiver of Tina, Louise, and Gene"


|  | 1 | 2 | 3 | 4 | 5 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Bob 1 | 0 | 0 | 1 | 1 | 1 |
| Linda 2 | 0 | 0 | 1 | 1 | 1 |
| Tina 3 | 0 | 0 | 0 | 0 | 0 |
| Louise 4 | 0 | 0 | 0 | 0 | 0 |
| Gene 5 | 0 | 0 | 0 | 0 | 0 |

: In a sociogram, this means swapping labels does not change the network
! In an adjacency matrix, this means having identical rows and columns

## Equivalence

## Two major forms of "equivalence" of network position: structural and regular

## Regular equivalence

: Two actors are regularly equivalent if they have ties to the same type of actors
: E.g. Linda Belcher and Marge Simpson are regularly equivalent in their role as "caregiver of children"

|  |  | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Bob | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 0 |
| Linda | 2 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 0 |
| Marge | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 |
| Homer | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 |
| Tina | 5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Louise | 6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Gene | 7 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Bart | 8 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Lisa | 9 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Maggie | 10 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |

## Equivalence



A restaurant with seven customers (C), four servers (S), and a floor manager (M)

## Comparing

 structural and regular equivalence
## Structural:

C1 and C2 (both served by S1)
: S2 and S3 (both serving C3, C4, C5 and reporting to M)
: Not S1 and S4 (serving different customers

## Regular:

C1-C7 (all served by servers)
: S1-S4 (all serving customers and reporting to a manager)
: "Customer," "server," and "manager" are mutually dependent categories

## Example

West Side Story (1961)


## 




## Example



West Side Story (2021)

## Example

## West Side Story Jets vs Sharks

| Friendship | R | T | I | A | B | C | P |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Riff | - | 1 | 1 | 1 | - | - |  |
| Tony | 1 | - | 1 | 1 | - | - |  |
| Ice | 1 | 1 | - | 1 | - | - |  |
| Action | 1 | 1 | 1 | - | - | - |  |
| Bernardo | - | - | - | - | - | 1 | 1 |
| Chino | - | - | - | - | 1 | - | 1 |
| Pepe | - | - | - | - | 1 | 1 |  |

$\left.\begin{array}{|r|c|c|c|c|c|c|}\hline \text { Rivalry } & \mathbf{R} & \mathbf{T} & \text { I } & \text { A } & \mathbf{B} & \mathbf{C} \\ \mathbf{P} \\ \hline \text { Riff } & \bullet & \cdot & \cdot & \cdot & 1 & 1\end{array}\right)$


Jets, Jet Girls, Sharks, and Shark Girls


## Jets, Jet Girls, Sharks,

## and Shark Girls

|  | 1 | 2 | 3 | 4 |  | 56 | 7 | 89 | 10 | 11 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Riff 1 | Complete |  |  |  | Col. Reg. |  | Null |  | Null |  |
| Tony |  |  |  |  |  |  |  |  |  |  |
| Ice 3 |  |  |  |  |  |  |  |  |  |  |
| Action |  |  |  |  |  |  |  |  |  |  |
| Velma | Row Regular |  |  |  | Comp. |  | Null |  | Null |  |
| Graziella 6 |  |  |  |  |  |  |  |  |  |  |
| Bernardo 7 | Null |  |  |  | Null |  | Complete |  | Col. Reg. |  |
| Chino 8 |  |  |  |  |  |  |  |  |  |  |
| Pepe 9 |  |  |  |  |  |  |  |  |  |  |
| Consuelo 10 | Null |  |  |  | Null |  | Row Regular |  | Comp. |  |
| Anita 11 |  |  |  |  |  |  |  |  |  |  |



Null-block-crossed lovers

|  | $\mathbf{1}$ | $\mathbf{2}$ | $\mathbf{3}$ | $\mathbf{4}$ | $\mathbf{5}$ | $\mathbf{6}$ | $\mathbf{7}$ | $\mathbf{8}$ | $\mathbf{9}$ | $\mathbf{1 0}$ | $\mathbf{1 1}$ | $\mathbf{1 2}$ |
| ---: | ---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Riff | $\mathbf{1}$ |  | 1 | 1 | 1 | 1 |  |  |  |  |  |  |

## Discovering Blocks

Algorithmically

## Discovering block structure

Normally, network data does not come pre-sorted : Block structure not apparent until rows and columns are re-ordered

|  | $\mathbf{1}$ | $\mathbf{2}$ | $\mathbf{3}$ | $\mathbf{4}$ | $\mathbf{5}$ | $\mathbf{6}$ | $\mathbf{7}$ | $\mathbf{8}$ | $\mathbf{9}$ | $\mathbf{1 0}$ | $\mathbf{1 1}$ | $\mathbf{1 2}$ |
| ---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Ice $\mathbf{1}$ |  | $\mathbf{1}$ |  |  |  | 1 | 1 |  |  |  |  | 1 |
| Graziella | $\mathbf{2}$ | 1 |  |  |  |  |  |  |  |  | 1 |  |
| Bernardo | $\mathbf{3}$ |  |  |  | 1 |  |  |  |  | 1 |  | 1 |$|$

## Discovering block structure

## There are two main approaches to fitting (a.k.a. estimating) block structure

## Traditional blockmodelling

: Define which blocks are "allowed"
: Re-arrange rows and columns in the adjacency matrix until it (approximately) fits the pattern
: Effective way to look for expected patterns, e.g. a coreperiphery structure
: Can take advantage of multiple relations on a group, (friend, enemy, authority, etc.)

Stochastic blockmodelling
: Assume that there is some number of latent blocks in a network
: Edges within and between blocks follow simple probabilistic patterns (e.g. "actors in block A have a $10 \%$ chance to connect to any actor in block B")
: Algorithms try to simultaneously discover the number of blocks, the membership of the blocks, and the edge probability between blocks

## Discovering block structure

## Stochastic

 block model (SBM)

