Roles as Relations

Roles as relations

Sociology of roles

Roles are bundles of expectations in interaction

- the role of *parent* might be defined by expectations of caregiving toward certain children
- the role of *child* might be defined (in part) by expectations of dependence on parents
- If the role of *boxer* is defined by expectations of physical violence toward other boxers and deference toward a coach

Roles are about *relations between categories* — perfect for network analysis!

Roles as relations

Roles as relations

Blockmodelling aims to formalize this intuition

- E Somewhat vague term, refers to methods, models, and theories that focus on the relational nature of roles
- Find categories of actors in "equivalent" positions in a network

Structural & Regular Equivalence

Equivalence

Two major forms of "equivalence" of network position: *structural* and *regular*

Structural equivalence

- E Two actors are *structurally equivalent* if they have the same ties to the same set of actors
- E.g. Bob and Linda Belcher are structurally equivalent in their role as "caregiver of Tina, Louise, and Gene"
- In a sociogram, this means swapping labels does not change the network
- In an *adjacency matrix*, this means having identical rows and columns

	1	2	3	4	5
Bob 1	0	0	1	1	1
Linda 2	0	0	1	1	1
Tina 3	0	0	0	0	0
Louise 4	0	0	0	0	0
Gene 5	0	0	0	0	0

Equivalence

Two major forms of "equivalence" of network position: *structural* and *regular*

Regular equivalence

- Two actors are regularly equivalent if they have ties to the same type of actors
- E.g. Linda Belcher and Marge Simpson are regularly equivalent in their role as "caregiver of children"

		1	2	3	4	5	6	7	8	9	10
Bob	1	0	0	0	0	1	1	1	0	0	0
Linda	2	0	0	0	0	1	1	1	0	0	0
Marge	3	0	0	0	0	0	0	0	1	1	1
Homer	4	0	0	0	0	0	0	0	1	1	1
Tina	5	0	0	0	0	0	0	0	0	0	0
Louise	6	0	0	0	0	0	0	0	0	0	0
Gene	7	0	0	0	0	0	0	0	0	0	0
Bart	8	0	0	0	0	0	0	0	0	0	0
Lisa	9	0	0	0	0	0	0	0	0	0	0
Maggie	10	0	0	0	0	0	0	0	0	0	0

Equivalence

A restaurant with seven customers (C), four servers (S), and a floor manager (M)

Comparing structural and regular equivalence

Structural:

- : C1 and C2 (both served by S1)
- E S2 and S3 (both serving C3, C4, C5 and reporting to M)
- Not S1 and S4 (serving different customers

Regular:

- EC1-C7 (all served by servers)
- E S1–S4 (all serving customers and reporting to a manager)
- E "Customer," "server," and "manager" are mutually dependent categories

West Side Story (1961)

West Side Story (2021)

West Side Story Jets vs Sharks

Friendship	R	Т		Α	Β	С	Ρ
Riff	•	1	1	1	•	•	•
Tony	1	•	1	1	•	•	•
lce	1	1	•	1	•	•	•
Action	1	1	1	•	•	•	•
Bernardo	•	•	•	•	•	1	1
Chino	•	•	•	•	1	•	1
Рере	•	•	•	•	1	1	•

Rivalry	R	Т		Α	В	С	Ρ
Riff	•	•	•	•	1	1	1
Tony	•	•	•	•	1	1	1
lce	•	•	•	•	1	1	1
Action	•	•	•	•	1	1	1
Bernardo	1	1	1	1	•	•	•
Chino	1	1	1	1	•	•	•
Рере	1	1	1	1	•	•	•

Jets, Jet Girls, Sharks, and Shark Girls

		1	2	3	4	5	6	7	8	9	10	11
Riff	1		1	1	1	1						
Tony	2	1		1	1							
Ice	3	1	1		1		1					
Action	4	1	1	1								
Velma	5	1					1					
Graziella	6			1		1						
Bernardo	7								1	1		1
Chino	8							1		1		
Рере	9							1	1		1	
Consuelo	10									1		1
Anita	11							1			1	

Jets, Jet Girls, Sharks, and Shark Girls

		1	2	3	4	5	6	7	8	9	10	11	
Riff	1		1	1					1				
Tony	2		Com	nlota		C	ol.		NIII	Null			
lce	3		JUIII	hiere	;	Re	eg.		INUII				
Action	4												
Velma	5	Dow Dogular					200		NIII		NI.		
Graziella	6	Π		eyu	al	601	nh.		INUII				
Bernardo	7												
Chino	8		Nu	ull		N	ull	Co	mple				
Рере	9									Reg.			
Consuelo	10		Null			NI.		Row			Comp		
Anita	11							R	egula	Lomb.			

Null-block-crossed lovers

		1	2	3	4	5	6	7	8	9	10	11	12
Riff	1		1	1	1	1							
Tony	2	1		1	1								(1)
lce	3	1	1		1		1						
Action	4	1	1	1									
Velma	5	1					1						
Graziella	6			1		1							
Bernardo	7								1	1		1	
Chino	8							1		1			
Рере	9							1	1		1		
Consuelo	10									1		1	1
Anita	11							1			1		1
Maria	12		(1)								1	1	20

Discovering Blocks Algorithmically

Discovering block structure

Normally, network data does not come pre-sorted

Block structure not apparent until rows and columns are re-ordered

		1	2	3	4	5	6	7	8	9	10	11	12
lce	1		1				1	1					1
Graziella	2	1									1		
Bernardo	3				1					1		1	
Chino	4			1						1			
Maria	5							1	1			1	
Riff	6	1						1			1		1
Tony	7	1				1	1						1
Consuelo	8					1				1		1	
Рере	9			1	1				1				
Velma	10		1				1						
Anita	11			1		1			1				
Action	12	1					1	1					

Discovering block structure

There are two main approaches to *fitting* (a.k.a. *estimating*) block structure

Traditional blockmodelling

- Define which blocks are "allowed"
- Re-arrange rows and columns in the adjacency matrix until it (approximately) fits the pattern
- Effective way to look for expected patterns, e.g. a coreperiphery structure
- E Can take advantage of multiple relations on a group, (friend, enemy, authority, etc.)

Stochastic blockmodelling

- Assume that there is some number of *latent* blocks in a network
- Edges within and between blocks follow simple probabilistic patterns (e.g. "actors in block A have a 10% chance to connect to any actor in block B")
- Algorithms try to simultaneously discover the number of blocks, the membership of the blocks, and the edge probability between blocks

Discovering block structure

80.0

Consuelo 10

Anita 11

Maria 12

Stochastic Jet Shark block model **Jets Sharks** Girls Girls (SBM) 10 11 12 2 3 5 6 7 8 9 4 Riff Tony 2 0.25 1.0 0.0 **80.0** lce 3 Action 4 Velma 5 0.25 1.0 0.0 0.0 Graziella 6 Bernardo 7 1.0 0.22 0.0 0.0 Chino 8 Pepe 9

0.0

0.22

1.0